QryptCoin: A Peer-to-Peer Electronic Cash System
with Consensus-Enforced Post-Quantum Authorization

Mikhael A.
info@qryptcoin.org

Abstract

QryptCoin is a peer-to-peer electronic cash system combining proof-of-work ordering with post-
quantum transaction authorization using ML-DSA-65. The protocol introduces consensus-
enforced one-time public keys: each ML-DSA-65 public key may be revealed and used at most
once on the active chain, with any reuse rendering the containing block invalid. Outputs commit
to public keys by hash and reveal them only at spend time via a canonical encoding scheme.
This design minimizes long-term cryptographic exposure, eliminates key-reuse failure modes,
and provides quantum resistance while maintaining compatibility with existing SHA-256 min-

ing infrastructure.

1 Introduction

Decentralized electronic cash systems must enable direct value transfer over open networks without
trusted intermediaries. Such systems face two fundamental challenges: preventing double spending
through global transaction ordering, and securing authorization mechanisms against both current
and future cryptanalytic advances.

Existing cryptocurrency protocols face two persistent sources of failure: (i) ambiguous consensus-
critical encodings that cause implementation divergence, and (ii) long-lived authorization keys vul-
nerable to operational reuse and future quantum attacks. While current public-key cryptography
remains secure against classical computers, the advent of cryptographically-relevant quantum com-
puters poses an existential threat to systems relying solely on elliptic curve signatures.

QryptCoin addresses these challenges through two deliberate design choices:

1. Post-quantum authorization with commitment-then-reveal: Outputs commit to ML-
DSA-65 public keys by hash; keys are revealed only at spend time, minimizing exposure

windows.

2. Consensus-enforced one-time keys: Public-key reuse is treated as a consensus failure,
not merely a wallet policy recommendation. Each revealed key may appear at most once on

the active chain.

This paper describes the protocol mechanisms, security properties, and design rationale. Im-

plementation constants and byte layouts are deferred to supplementary specifications.

Application Layer (Wallets, Services)

P2P Network (Gossip, Relay)

!

State Machine (UTXOs, One-Time Keys)

!

Cryptographic Primitives] SHA-256, SHA3-256, ML-DSA-65

J
J
J
J

[Consensus (PoW, Chain Selection)

Figure 1: QryptCoin protocol stack. The state machine maintains both UTXOs and the global
one-time key set as consensus-critical state.

2 System Architecture

QryptCoin employs a layered architecture (Figure 1) with clearly separated concerns:

Cryptographic Layer. Two hash families provide domain separation: Hy(x) denotes SHA-256
(used for proof-of-work), while H3(x) denotes SHA3-256 (used for commitments and signatures).
Transaction authorization uses ML-DSA-65 (FIPS 204) exclusively.

State Machine. Ledger state comprises the UTXO set and a global revealed-key set S. Both
are updated atomically during block connection and rolled back during reorganizations.

Consensus Layer. Proof-of-work provides probabilistic finality. Nodes select the valid chain
with greatest cumulative work.

Network Layer. Peer-to-peer gossip disseminates transactions and blocks. Optional post-
quantum transport encryption (ML-KEM-768 + ChaCha20-Poly1305) provides confidentiality against

network adversaries.

2.1 Units and Primitives

The native unit is the QRY, with 1 QRY = 10® Miks. All consensus amounts are denominated in
Miks.

Domain separation for signature digests uses literal ASCII tags in the hashed preimage:

sighash; = H3("QRY-SIGHASH-V1" || M;)

CREATE OUTPUT

{Generate (ski,pki)} R T R { Reveal REVEAL(pki)}
l | l
{REVEAL — encode(pki)ﬂ {Sign: o < ML-DSA(sk;, sighash)}
I l

{program — H3(REVEAL” {Verify: H5(REVEAL) = program}

l l

Output: 73 Verify: pk; ¢ S
P2QH(program)

Accept &

Update &

Figure 2: P2QH commitment-then-reveal protocol. The public key is revealed only at spend time
and must not already exist in the global set S.

3 Transaction Model

3.1 UTXO Structure

QryptCoin uses an unspent transaction output (UTXO) model. Each output contains a value in
Miks and a locking descriptor specifying authorization conditions. An input references a prior
output by outpoint (txid,vout) and provides witness data satisfying the locking condition.

3.2 Pay-to-Quantum-Hash (P2QH)

The primary output type is pay-to-quantum-hash, implementing a commitment-then-reveal scheme.
Outputs commit to a 32-byte program:

program = H3(REVEAL_V1)

where REVEAL V1 is a canonical encoding of the ML-DSA public key. The public key remains hidden
until spend time, minimizing exposure to quantum attacks.
Witness Structure. For a P2QH spend, the witness contains exactly two items: (1) REVEAL_V1—the
canonical public-key reveal, and (2) the ML-DSA signature over a domain-separated digest.
Canonical Encoding. The REVEAL_V1 format is fixed-width with no optional fields or trailing

bytes:
Field Size
version 1 byte (must be 0x01)
algo_id 1 byte (must be 0x01)

params_id 1 byte (must be 0x01)
reserved 2 bytes (must be 0x0000)
pk_len 2 bytes (must be 1952)
pk_bytes 1952 bytes

e ’R’eorg rollback ™=+ .
¢ First spend //\ Reuse attempt
Unused @ Invalid

pk_hash € §
(on active chain)

Figure 3: Public key state transitions. Each key transitions from unused to revealed exactly once.
Reuse attempts cause transaction (and block) rejection.

Non-canonical encodings are rejected at consensus level. Nodes do not normalize malformed en-
codings; any deviation from the canonical format renders the transaction invalid.
3.3 Consensus-Enforced One-Time Keys

Key Innovation. QryptCoin enforces one-time public keys at the consensus level—not as wallet
policy, but as a validity rule.
Let pk_bytes be the ML-DSA public key extracted from REVEAL_V1. Define:

pk_hash = Hs(pk_bytes)

Nodes maintain a consensus-critical set S of all pk_hash values revealed on the active chain.

Transaction validation requires:
1. The input reveals a canonical REVEAL V1
2. The revealed pk_hash ¢ S

3. The ML-DSA signature is valid

Upon block acceptance, new pk_hash values are inserted into §. Reorganizations deterministi-
cally apply insertions and removals. The revealed-key set S grows monotonically with transaction
activity on the active chain and is rolled back only during chain reorganizations.

Security Rationale. This design provides three benefits:

e Reduced exposure window: Public keys exist on-chain only after their associated funds are
spent

e Quantum resistance: Even if ML-DSA is partially weakened, attackers cannot exploit revealed
keys for future spends

e Eliminated operational failures: Address reuse—a common source of privacy and security
failures—becomes impossible

4 Block Structure and Consensus

4.1 Block Format

Each block contains an 80-byte header and an ordered list of transactions beginning with a coinbase

transaction.

’ Block Header (80 bytes) ‘

version (4 bytes)

prev_block_hash (32 bytes)

timestamp (4 bytes)

difficulty_bits (4 bytes)

|
|
’ merkle_root (32 bytes)
|
|
|

nonce (4 bytes)

Block Body

’ tx_count (varint) ‘

’ coinbase tx (witness commitment) ‘

tx[1] ... tx[n]

. J

Figure 4: Block structure. The header commits to the transaction Merkle root; the coinbase
transaction contains the witness commitment.

Proof-of-Work. Blocks are valid only if:
H?2(headergg) < T

where 7" is the target encoded in difficulty_bits. Using double SHA-256 maintains compatibility
with existing mining hardware.

Witness Commitment. The coinbase transaction embeds a fixed-format witness commitment
binding witness data to block validity:

QRYW || 0x01 || Hs(witness_merkle_root)

This prevents witness malleability without changing the header hash.

4.2 Chain Selection

Nodes select the valid chain with greatest cumulative proof-of-work. Settlement is probabilistic:
for an adversary controlling fraction ¢ < 1/2 of hashpower, the probability of reorganizing k

confirmations is bounded by:

Preorg(k) < (q)k

1—gq

k ¢=010 ¢=020 ¢=030 q=0.40

1 0.111 0.250 0.429 0.667
6 19x107% 24x107* 6.2x1073 0.088
10 29x10719 95%x1077 96x107° 0.017

Table 1: Reorganization probability upper bounds for various adversary hashpower fractions and
confirmation depths.

4.3 Difficulty Adjustment

Difficulty adjusts every 2016 blocks targeting 600-second mean block spacing. The adjustment uses
observed timestamps with bounded clamping to prevent abrupt swings. Specifically, the observed
timespan is clamped to the range [T'/4,4T] before computing the new target, where 7T is the target
timespan.

4.4 Fork Resolution

When forks occur, nodes resolve by selecting the chain with greater cumulative work. State transi-
tions (UTXO set and revealed-key set S) are applied and rolled back deterministically during block
connect /disconnect operations.

5 Network Protocol

5.1 Message Propagation

Transactions and blocks propagate via inventory announcements. Nodes independently validate all

received data before relay, ensuring that invalid transactions and blocks do not propagate.

inv
v
A B o ____________|
getdata

nv

Figure 5: Inventory-based gossip protocol. Nodes announce data availability; peers request items
they lack.

5.2 Authenticated Transport (Optional)

Peers may establish encrypted channels using ML-KEM key establishment and ML-DSA transcript
authentication, with subsequent messages protected by ChaCha20-Poly1305. This improves confi-
dentiality against network adversaries but does not affect consensus—nodes must still validate all
data locally.

6 Economics and Incentives

6.1 Monetary Policy

Block producers receive a subsidy plus transaction fees. The subsidy begins at 50 QRY and halves
every 210,000 blocks, yielding a maximum supply of 21,000,000 QRY.

20 |~ —

—~
>
s | o
c
=

10 — —
= s SUpply
% - -~ Cap
a O N

0 | | | | | |

0 1 2 3 4 5 6 7

Block Height (millions)

Figure 6: Asymptotic supply curve approaching 21M QRY maximum.

6.2 Transaction Fees

Fees are denominated in Miks per virtual byte, where virtual bytes derive from transaction weight:
weight = 4 x base_bytes + witness_bytes

Post-quantum witnesses are larger than classical signatures, increasing fees under fee-market con-

ditions. This creates natural economic pressure for efficient witness construction.

7 Wallet Architecture

7.1 Key Derivation

The reference wallet uses a 24-word BIP-39 compatible mnemonic. The derivation pipeline produces
deterministic ML-DSA keypairs:

1. Mnemonic — PBKDF2-HMAC-SHA512 — 64-byte seed

2. 64-byte seed — H3 — 32-byte master seed

3. Per-index: H3("QRY-MLDSA-KEYGEN-V1" || master || i) seeds SHAKE256-XOF

4. XOF output feeds ML-DSA.KeyGen deterministically

7.2 Payment Codes

Because consensus enforces one-time keys, addresses cannot be safely reused. Payment Codes
provide reusable identifiers that resolve interactively to fresh one-time addresses via authenticated
channels. This preserves usability for donations and invoices without relaxing consensus rules.
Payment Codes are a wallet-layer mechanism and do not affect consensus validity.

8 Security Analysis

8.1 Threat Model

QryptCoin assumes adversaries may: create conflicting transactions, delay or selectively drop mes-
sages, exploit encoding ambiguities, and attempt key theft. The protocol does not prevent majority
hashpower attacks—an inherent limitation of proof-of-work.

8.2 Double-Spend Resistance

Double spending requires building an alternative chain with greater cumulative work. For ¢ < 1/2,
success probability decays exponentially with confirmation depth (Table 1).

8.3 Post-Quantum Security

Pre-spend protection. Outputs commit only to H3(REVEAL); public keys remain hidden until

spend time. A quantum adversary observing outputs cannot extract keys to forge spends.
Post-spend protection. Revealed keys cannot be reused by consensus rule. Even if ML-DSA

is partially weakened, attackers cannot exploit revealed keys for new transactions.
Proof-of-work compatibility. SHA-256 mining remains secure: Grover’s algorithm provides

only quadratic speedup, addressable by difficulty adjustment.

8.4 Encoding Determinism

Strict canonical encodings eliminate cross-implementation divergence. Non-canonical REVEAL_V1
payloads are rejected, preventing consensus splits from parsing ambiguities.

8.5 Key Compromise Limitations

One-time keys limit exposure duration but do not prevent theft under endpoint compromise. If
a signing key is stolen before its output is spent, an attacker can produce a valid spend. This is

mitigated by operational security, not protocol design.

9 Privacy Considerations

QryptCoin does not provide network-layer anonymity. The one-time key rule prevents revealed-key
reuse but does not eliminate transaction graph analysis. Users requiring strong privacy should
employ additional privacy-enhancing technologies.

10 Reclaiming Disk Space

A fully validating node does not need to retain all historical spent outputs to validate new blocks.

Instead, nodes maintain a compact chainstate consisting of:
e The UTXO set (current spendable outputs)
e The revealed-public-key set S (keys already used on the active chain)

e A Dblock index and headers needed for chain selection and reorganization

Pruned (headers only) Full blocks

l Header ‘ l Header ‘ Header Header
Block 1 Block 2 Block N-1 Block N
T
(e mm e e e e = 1
1
Y
R 7
Chainstate
UTXO Set + Revealed Keys S

Figure 7: Nodes can prune old block bodies while retaining headers and chainstate. The chainstate
includes both UTXOs and the one-time key set S.

The reference implementation persists both the UTXO snapshot and the revealed-key snapshot
atomically, binding them to the active tip. These snapshots accelerate restart and reindex work-
flows. Because the one-time key set is part of consensus state, it cannot be discarded without losing
validation capability.

11 Simplified Verification

Lightweight verification can be performed by maintaining only block headers and requesting Merkle

proofs for specific transactions. Such clients can verify:
e Proof-of-work on headers
e Inclusion of a transaction in a block via Merkle proof over txids

However, lightweight clients cannot independently enforce all consensus rules—notably full
UTXO validation and the one-time public-key rule—without additional authenticated state. Sim-
plified verification therefore requires trust in one or more full nodes for complete validation. Users
with high-value transactions or stringent security requirements should operate full nodes.

Merkle Root

Hag (proof)

H1 (proof) Hoy Hs
TX verified X TX TX

Figure 8: Simplified Payment Verification (SPV). A lightweight client verifies transaction inclusion
using a Merkle proof (orange nodes) without downloading full blocks.

12 Conclusion

QryptCoin demonstrates that post-quantum security and consensus-enforced key hygiene can be
achieved without sacrificing the proven properties of proof-of-work ordering. By committing to
public keys by hash, revealing them only at spend time, and enforcing one-time usage at the
consensus level, QryptCoin eliminates a significant class of operational and cryptographic failures
while providing quantum resistance.

The protocol prioritizes explicit rules, deterministic encodings, and minimal consensus surface
area over maximal expressiveness. Future work may extend the authorization model to support
threshold signatures and time-locked contracts while preserving the one-time key invariant.

References
1. NIST. FIPS 204: Module-Lattice-Based Digital Signature Standard. 2024.
2. NIST. FIPS 203: Module-Lattice-Based Key-FEncapsulation Mechanism Standard. 2024.
3. NIST. FIPS 202: SHA-3 Standard. 2015.
4. NIST. FIPS 180-4: Secure Hash Standard. 2015.
5. Merkle, R. Protocols for Public Key Cryptosystems. IEEE S&P, 1980.
6. Dwork, C. and Naor, M. Pricing via Processing. CRYPTO, 1992.

7. IETF. RFC 8439: ChaCha20-Poly1305. 2018.

10

	Introduction
	System Architecture
	Units and Primitives

	Transaction Model
	UTXO Structure
	Pay-to-Quantum-Hash (P2QH)
	Consensus-Enforced One-Time Keys

	Block Structure and Consensus
	Block Format
	Chain Selection
	Difficulty Adjustment
	Fork Resolution

	Network Protocol
	Message Propagation
	Authenticated Transport (Optional)

	Economics and Incentives
	Monetary Policy
	Transaction Fees

	Wallet Architecture
	Key Derivation
	Payment Codes

	Security Analysis
	Threat Model
	Double-Spend Resistance
	Post-Quantum Security
	Encoding Determinism
	Key Compromise Limitations

	Privacy Considerations
	Reclaiming Disk Space
	Simplified Verification
	Conclusion

